
Soft matter: Density functionals and simulation of
simple molecules on graphics cards

Marlon Ebert

Institut für Physik, Johannes Gutenberg-Universität Mainz

November 25, 2009

Outline

1 GPU Computing

2 Physical background

3 Tailor expanded functional

4 Implementation

5 Rosenfeld functional

6 Results and outlook

Physical nVidia GPU architecture ...

... and how it looks from a programmers perspective

What we want to do

Calculate pair correlation functions and density profiles around a test
particle in two dimensions.

Equilibrium: ρ(r) = ρ0 g(r).

Under shear: ρ(x ,y) = ρ0 g(x ,y) (which gives us rheological
information).

The basic concept of classical DFT

Given the full free energy functional F [ρ] of the system the density
profile ρ(r) is found by minimising

Ω = F [ρ]−
∫

dr ρ(r)(µ− V (r)).

F [ρ] can be expressed by the sum of the ideal gas free energy and
the excess free energy

F [ρ] = F id [ρ] + F ex [ρ].

For ρ = ρeq (equilibrium density) Ω is the grand potential.

Density functional for hard discs

Ideal gas and tailor expanded functional:

F id =

∫
dr ρ(r) · ln (ρ0 − 1) ,

F ex =

∫
dr µ ρ(r)− 1

2

∫
dr dr’ c(2)(r− r’; ρ0) ∆ρ(r) ∆ρ(r’).

c(2)(r− r’; ρ0) is the direct correlation function.

Differentiation of Ω leads to

ρ(r) = ρ0 · exp
[
−V (r) + c(2) ∗∆ρ

]
.

Identifying the main computational steps

Solution by iterating ρi+1(r) = ρ0e
−V (r)+c(2)∗∆ρi .

Calculation will take place on a 2D lattice of size n × n.

V (r) constant potential, infinite in the area occupied by our test
particle and 0 everywhere else.

c(2) constant and the fourier transformed values can be stored in the
graphic cards memory.

∆ρ = ρ(r)− ρ0 has to be calculated each step.

The convolution c(2) ∗∆ρ will be calculated in fourier space, making
fourier transformations necessary. ∆ρ has to be calculated in each
step. The fourier transformations will be the most time consuming
part of the calculation.

The Fast Fourier Transformation (FFT)

The direct evaluation of the fourier transformation
Xk =

∑N−1
n=0 xne

−i2πk n
N runs in O(N2).

Cooley-Tukey FFT algorithm divides one fourier transformation of
size N into two of size N/2

Xk =

N
2
−1∑

m=0

x2me−i2πk 2m
N +

N
2
−1∑

m=0

x2m+1e
−i2πk 2m+1

N

=
M−1∑

m=0

x2me−i2πk m
M + e−

i2π
N

k
M−1∑

m=0

x2m+1e
−i2πk m

M

=

{
Ek + e−

i2π
N

kOk k < M,

Ek−M − e−
i2π
N

(k−M)Ok−M k ≥ M.

using Ek+M = Ek , Ok+M = Ok even and odd FT.

Recursive application leads to runtime of O(N logN)

The hardware and software

CPU: Intel Core2 Quad CPU Q6700 @ 2.66GHz

GPU: NVidia GeForce GTX 280

NVidia Driver Version: 185.18.14

X Server Version: 1.5.2 (11)

Operating System: SUSE Linux 11.1, 64 bit

Kernel Version: 2.6.27.29

Implementation (1)

The CUFFT library is used for the fourier transformations.

#inc l u d e <c u f f t . h>

d e v i c e Complex∗ d drho ;
d e v i c e Complex∗ d f o l d ;
d e v i c e c u f f tHand l e p l an ;

c u f f tP l a n 2d (&plan , s i z e x , s i z e y , CUFFT C2C) ;

cu f f tExecC2C (plan , (cu f f tComp l ex ∗) d drho , (cu f f tComp l ex ∗) d drho , CUFFT FORWARD) ;
cu f f tExecC2C (plan , (cu f f tComp l ex ∗) d f o l d , (cu f f tComp l ex ∗) d f o l d , CUFFT INVERSE) ;

c u f f tD e s t r o y (p l an) ;
cudaFree (d f o l d) ;
cudaFree (d drho) ;

CUFFT is inspired by the popular FFTW C library.

CUBLAS (inspired by the popular BLAS C library) is also available
but not shown here.

Implementation (2)

Evaluating the exponential function requires point-wise matrix
manipulation and can easily be parallelized.

#inc l u d e <c u f f t . h>

g l o b a l vo id f u n c t i o n (cu f f tComp l ex∗ r e s , cu f f tComp l ex∗ v , cu f f tComp l ex∗ f o l d ,
f l o a t r , i n t sx , i n t sy) {

i n t X = b l o c k I d x . x ∗ blockDim . x + th r e a d I d x . x ;
i n t Y = b l o c k I d x . y ∗ blockDim . y + th r e a d I d x . y ;
i n t pos = X+Y∗ sx ;
i f (X < sx && Y < sy) {

r e s [pos] . x = r ∗ exp(− v [pos] . x + f o l d [pos] . x) ;
r e s [pos] . y = 0 ;

}
}

vo id i t e r a t e g p u () {
dim3 dimBlock (BLOCK SIZE , BLOCK SIZE) ;
i n t GRID X = (i n t) c e i l ((f l o a t) s i z e x /(f l o a t) BLOCK SIZE) ;
i n t GRID Y = (i n t) c e i l ((f l o a t) s i z e y /(f l o a t) BLOCK SIZE) ;
dim3 dimGr id (GRID X , GRID Y) ;
[. . .]
f u n c t i o n<<<dimGrid , dimBlock>>>(d f o l d , d v , d f o l d , rho0 , s i z e x , s i z e y) ;
[. . .]

}

Implementation (3)

For convergence we need the difference between two iterations.
g l o b a l vo id compa r e f a s t (cu f f tComp l ex∗ a , cu f f tComp l ex∗ b , i n t sx , i n t sy ,

f l o a t dx , f l o a t r)
{

i n t X = b l o c k I d x . x ∗ blockDim . x + th r e a d I d x . x ;
i n t Y = b l o c k I d x . y ∗ blockDim . y + th r e a d I d x . y ;
i n t pos = X+Y∗ sx ;
i f (pos < MAX BLOCK)
{

s h a r e d f l o a t c [MAX BLOCK] ;
c [pos] = a [pos + (i n t) (r /dx)] . x − b [pos + (i n t) (r /dx)] . x ;
c [pos] ∗= c [pos] ;
c [pos] /= (f l o a t) MAX BLOCK;

s y n c t h r e a d s () ;
f o r (i n t s=MAX BLOCK/2 ; s >0; s /=2)
{

i f (pos < s)
{

c [pos] += c [pos + s] ;
}

s y n c t h r e a d s () ;
}
i f (pos == 0)

{
a [0] . x = c [0] ;
a [0] . y = 0 ;

}
}

}

Radial distribution function g(r)

Figure: Comparison between DFT (red) and MC simulation (green) at a density
of ρ0 = 0.65. More accurate DFT results can be optained by using a better
functional instead of the simple tailor expansion used in this example.

A complex model ...

New functional with weighted densities (Rosenfeld functional):

F ex =

∫
d2r

[
−µ0 · ln(1− n2) +

1

4π

n2
1 − n2

1− n2

]

with ni (x) =

∫
ρ(x′) · ωi (x− x′)dx′

and ω1 = δ(R − r), ω2 = Θ(R − r), ω = −OOOω2.

New equation to iterate:

ρ = ρ0 · exp
[
−δF

δρ
+ µex − V ex

]
.

... leads to new challenges

The ωi are constant and need to be calculated once.

The ni have to be calculated in every time step which leads to an
increase in the number of fourier transformations performed in each
step.

All these fields have to be available in the graphic cards memory,
leading to a lot higher overall memory consumption.

Maximum theoretical lattice size on currently available cards is
4096x4096 for 4GB cards, 2048x2048 has been achieved with our
hardware, most runs are performed on a 1024x1024 grid.

Benchmarking

A typical run on a 1024 x 1024 lattice:

I n i t i a l i z a t i o n t ime : 208 .862 ms
#FFT t ime : 2272 .37 ms
#Funct i on e v a l u a t i o n t ime : 277 .565 ms
#l o o p s : 377
#Ov e r a l l t ime : 4101 .56 ms

Overall time is larger then the sum of the individual parts due to a
“GPU boot” which has to occur before initialization.

The ratio of fourier transformation to other calculations is about
8 : 1 which is similar to CPU calculations.

The computation is a factor of 100 faster then a naive CPU
implementation (using FFTW).

The use of double precision has no significant impact on the result.

Outlook

Calculations in 2D allow for the addition of shear and similar effects.

Three body correlation functions can be efficiently calculated on the
GPUs.

Realistic results are expected using the Rosenfeld functional.

3D systems can be solved, memory constraints however will only
allow for small grid sizes: Up to is possible 1283 with the currently
available cards while 5123 is necessary to be able to compete with
CPU calculations.

